Symmetric Reverse Gamma *-4-Centralizers on Semiprime Gamma Rings with Involution

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Derivations on Semiprime Gamma Rings with Involution

An extensive generalized concept of classical ring set forth the notion of a gamma ring theory. As an emerging field of research, the research work of classical ring theory to the gamma ring theory has been drawn interest of many algebraists and prominent mathematicians over the world to determine many basic properties of gamma ring and to enrich the world of algebra. The different researchers ...

متن کامل

Centralizers on semiprime rings

The main result: Let R be a 2-torsion free semiprime ring and let T : R → R be an additive mapping. Suppose that T (xyx) = xT (y)x holds for all x, y ∈ R. In this case T is a centralizer.

متن کامل

On centralizers of prime rings with involution

‎Let $R$ be a ring with involution $*$‎. ‎An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$‎. ‎The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.

متن کامل

Centralizers on prime and semiprime rings

The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let R be a noncommutative prime ring of characteristic different from two and let S and T be left centralizers on R. Suppose that [S(x), T (x)]S(x) + S(x)[S(x), T (x)] = 0 is fulfilled for all x ∈ R. If S 6= 0 (T 6= 0) then there exists λ from the extende...

متن کامل

On Θ-centralizers of Semiprime Rings (ii)

The following result is proved: Let R be a 2-torsion free semiprime ring, and let T : R → R be an additive mapping, related to a surjective homomorphism θ : R → R, such that 2T (x2) = T (x)θ(x) + θ(x)T (x) for all x ∈ R. Then T is both a left and a right θ-centralizer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Al-Qadisiyah Journal Of Pure Science

سال: 2021

ISSN: 2411-3514,1997-2490

DOI: 10.29350/qjps.2021.26.2.1283